贝叶斯优化算法(Bayesian Optimization)及其Python 和 MATLAB 实现

贝叶斯优化算法(Bayesian Optimization)是一种基于贝叶斯统计理论的优化方法,通常用于在复杂搜索空间中寻找最优解。该算法能够有效地在未知黑盒函数上进行优化,并在相对较少的迭代次数内找到较优解,因此在许多领域如超参数优化、自动机器学习等中得到了广泛应用。

**背景:**
贝叶斯优化算法最早由Jonh Mockus等人提出,借鉴了高斯过程回归与贝叶斯优化技术相结合的优点。它适用于复杂的非凸函数优化问题,特别适用于一些黑盒函数难以求解、计算代价昂贵的场景。

**原理:**
贝叶斯优化的核心思想是通过构建目标函数的后验分布,利用先验信息和观测数据来推断参数的分布,并以此指导下一步的搜索。算法会根据当前已有数据,在未知区域寻找使目标函数有望最小化的点。通过不断建立高斯过程模型,不断地选择最具信息量的点进行探索,直到找到最优解。

**实现步骤:**
1. 选择高斯过程作为目标函数的先验模型;
2. 假设目标函数服从高斯过程,利用先验数据更新高斯过程的超参数;
3. 根据后验概率计算下一个最优的探索点;
4. 评估目标函数在这个探索点处的值,并更新高斯过程的后验分布;
5. 根据新的后验概率计算下一个最优的探索点,并反复迭代直到收敛。

**优缺点:**
- 优点:
1. 高效:相对于传统优化算法,贝叶斯优化算法通常在较少的迭代次数内找到最优解;
2. 对于复杂、高维的搜索空间有较好的鲁棒性;
3. 对于高代价的函数优化更加有效;
4. 能够很好地平衡探索(Exploration)和利用(Exploitation)。

- 缺点:
1. 对于高维度的搜索空间来说,计算复杂度较高;
2. 在已有数据量较小的情况下,容易受到数据噪声的影响;
3. 对于具有大量局部最优解的问题可能陷入局部最优解。

**相关应用:**
1. 超参数优化:机器学习中的超参数优化是贝叶斯优化的常见应用领域,能够有效地提高模型效果;
2. 自动化机器学习:自动机器学习中的自动调参、自动特征选择等过程可以利用贝叶斯优化来提高效率;
3. 化学工程:在化学反应优化中,可以利用贝叶斯优化来减少实验次数,降低成本;
4. 计算机网络:网络资源动态分配、自适应控制等方面也可以应用贝叶斯优化算法。

总之,贝叶斯优化算法是一种强大的优化方法,能够在高维度、非凸函数等复杂情况下高效地寻找最优解,为许多领域的问题提供了有效的解决方案。
 

下面是使用 Python 和 MATLAB 实现贝叶斯优化算法来优化 SVM 超参数的简单示例代码:

Python 代码示例:

from sklearn.model_selection import cross_val_score
from sklearn import svm
from bayes_opt import BayesianOptimization

# 超参数优化的目标函数
def svm_cv(C, gamma):
    clf = svm.SVC(C=C, gamma=gamma)
    scores = cross_val_score(clf, X_train, y_train, cv=5)
    return scores.mean()

# 定义超参数搜索空间
pbounds = {'C': (1, 100), 'gamma': (0.001, 1)}

# 实例化贝叶斯优化对象
optimizer = BayesianOptimization(f=svm_cv, pbounds=pbounds, random_state=1)

# 运行优化过程
optimizer.maximize(init_points=5, n_iter=10)

# 输出最优超参数值
print(optimizer.max)

在这个示例中,首先定义了一个交叉验证函数 svm_cv,该函数将 SVM 的超参数 C 和 gamma 作为输入,返回交叉验证的平均得分。然后设定超参数搜索空间 pbounds,实例化了一个贝叶斯优化对象并通过 maximize() 方法执行优化过程,最后输出最优的超参数值。

MATLAB 代码示例:

% 加载数据集
load fisheriris
X_train = meas;
y_train = species;

% 定义目标函数
fun = @(x) svm_cv(x.C, x.gamma, X_train, y_train);

% 设置超参数搜索范围
lb = [1, 0.001];
ub = [100, 1];

% 使用基于高斯过程的贝叶斯优化
options = optimoptions('bayesopt', 'PlotFcn', 'bayesoptplot');
results = bayesopt(fun, lb, ub, 'IsObjectiveDeterministic', true, 'Options', options);

% 输出最优超参数值
best_params = results.XAtMinObjective;
disp(['Best C value: ', num2str(best_params.C)]);
disp(['Best gamma value: ', num2str(best_params.gamma)]);

function score = svm_cv(C, gamma, X_train, y_train)
    mdl = fitcsvm(X_train, y_train, 'KernelFunction', 'rbf', 'BoxConstraint', C, 'KernelScale', gamma);
    score = mean(crossval('mcr', X_train, y_train, 'Predfun', mdl));
end

在这个 MATLAB 示例中,首先加载了示例数据集 iris,然后定义了目标函数 svm_cv,该函数接受超参数 C 和 gamma 作为输入,并返回 SVM 的交叉验证得分。随后设置了超参数搜索范围,并使用 bayesopt 函数执行贝叶斯优化过程,最后输出最优的超参数值。

以上是贝叶斯优化算法优化 SVM 超参数的简单示例代码,可以根据实际情况对代码进行调整和扩展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/768123.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

第15届蓝桥杯Python青少组选拔赛(STEMA)2023年8月真题-附答案

第15届蓝桥杯Python青少组选拔赛(STEMA)2023年8月真题 题目总数: 11 总分数: 400 一、单选题 第 1 题 单选题 以下不符合 Python 语言变量命名规则的是( )。 A. k B. 2_k C. _k D. ok 答案 B …

全面解析自然语言处理(NLP):基础、挑战及应用前景

自然语言处理 (NLP) 简介与应用前景 自然语言处理(NLP)是人工智能和计算语言学的一个分支,致力于使计算机能够理解、解释和生成人类语言。这篇博文将深入探讨自然语言处理的基础知识、挑战、典型任务及其广泛的应用前景。 一、自然语言处理的…

企业部署 LLM 的四种方法

目录 生产环境中的四种 LLM 方法1. 基于上下文的提示工程 -- Prompt Engineering2. 检索增强生成 -- RAG3. 微调模型 -- Fine Tune4. 训练模型参考随着大型语言模型 (LLM) 的快速发展,企业正积极探索其用例,并将首批生成式 AI 应用部署到生产环境中。自今年 LLM 或 LLMOps 真…

全网最详细的软件测试面试题总结+基础知识(完整版)

一、什么是软件? 软件是计算机系统中的程序和相关文件或文档的总称。 二、什么是软件测试? 说法一:使用人工或自动的手段来运行或测量软件系统的过程,以检验软件系统是否满足规定的要求,并找出与预期结果之间的差异…

python3.8安装详细教程

python3.8下载及安装详细教程 Python 3.8 是一个重要的Python版本,它引入了一系列新功能和改进。以下是对Python 3.8的详细概述,包括其关键特性、安装方法以及版本状态等信息。 Python 3.8的关键特性 海象运算符(Walrus Operator&#xff09…

字符串操作函数

目录 一.strlen函数 二.strcpy函数 三.strcat函数 四.strcmp函数 五.strncpy函数 六.strncat函数 七.strncmp 函数 八.strstr函数 九.strtok函数 十.strchr函数 十一.strrchr函数 十二.strpbrk函数 十三.strspn函数 十四.strcspn函数 一.strlen函数 size_t str…

yaklang window安装 vscode运行得到“hello world”

资源来源:旅程伊始:Yak 语言环境安装与搭建环境 | Yak Program Language 安装yak语言非常简单,管理员权限打开命令行运行以下命令: powershell (new-object System.Net.WebClient).DownloadFile(https://yaklang.oss-cn-beijing…

“穿越时空的机械奇观:记里鼓车的历史与科技探秘“

在人类文明的发展历程中,科技的创新与进步不仅仅推动了社会的进步,也为我们留下了丰富的文化遗产。记里鼓车,作为一种古老的里程计量工具,其历史地位和技术成就在科技史上具有重要的意义。本文将详细介绍记里鼓车的起源、结构原理…

MySQL数据库设计作业 ——《网上书店系统》数据库设计实验报告

数据库设计作业——《网上书店系统》数据库设计 一、功能需求 普通用户:可以进行最基础的登陆操作,可浏览图书、按类别查询图书、查看 图书的详细信息,还可以注册成为会员。会员:需要填写详细信息(真实姓名、性别、手…

SSM学习4:spring整合mybatis、spring整合Junit

spring整合mybatis 之前的内容是有service层&#xff08;业务实现层&#xff09;、dao层&#xff08;操作数据库&#xff09;&#xff0c;现在新添加一个domain&#xff08;与业务相关的实体类&#xff09; 依赖配置 pom.xml <?xml version"1.0" encoding&quo…

springboot+vue+mybatis企业保修系统+PPT+论文+讲解+售后

企业管理系统提供给用户一个企业信息管理的系统&#xff0c;最新的企业信息让用户及时了解企业管理动向,,还能通过交流区互动更方便。本系统采用了B/S体系的结构&#xff0c;使用了java技术以及MYSQL作为后台数据库进行开发。系统主要分为系统管理员、员工和主管三个部分&#…

【C语言】手撕结构体内存对齐

©作者:末央&#xff06; ©系列:C语言初阶(适合小白入门) ©说明:以凡人之笔墨&#xff0c;书写未来之大梦 目录 结构体对齐规则结构体大小计算 - 三步曲 结构体对齐规则 怎么计算结构体的内存大小。这就涉及到结构体内存对齐的问题。 结构体的第⼀个成员对⻬到…

项目实战--MySQL实现分词模糊匹配

一、需求描述 推广人员添加公司到系统时&#xff0c;直接填写公司简称&#xff0c;而公司全称可能之前已经被添加过&#xff0c;为防止添加重复的公司&#xff0c;所以管理员在针对公司信息审批之前&#xff0c;需要查看以往添加的公司信息里是否有相同公司。 二、方案 技术…

项目2:API Hunter 细节回顾 -1

一. 接口调用 对于开发者来说&#xff0c;接口的调用应当是方便快捷的&#xff0c;而且出于安全考虑&#xff0c;通常会选择在后端调用第三方 API&#xff0c;避免在前端暴露诸如密码的敏感信息。 若采用 HTTP 调用方式&#xff1a; HttpClientRestTemplate第三方库&#xf…

【JavaWeb】登录校验-会话技术(一)Cookie与Session

登录校验 实现登陆后才能访问后端系统页面&#xff0c;不登陆则跳转登陆页面进行登陆。 首先我们在宏观上先有一个认知&#xff1a; HTTP协议是无状态协议。即每一次请求都是独立的&#xff0c;下一次请求并不会携带上一次请求的数据。 因此当我们通过浏览器访问登录后&#…

py黑帽子学习笔记_burp

配置burp kali虚机默认装好了社区版burp和java&#xff0c;其他os需要手动装 burp是用java&#xff0c;还得下载一个jython包&#xff0c;供burp用 配apt国内源&#xff0c;然后apt install jython --download-only&#xff0c;会只下载包而不安装&#xff0c;下载的目录搜一…

【JVM-05】Java内存区域(运行时数据区)、对象创建过程、内存布局

【JVM-05】Java内存区域即运行时数据区、对象创建过程、内存布局 1. 介绍下Java内存区域(运行时数据区)1.1 程序计数器(线程私有)1.2 虚拟机栈(线程私有)1.3 本地方法栈(线程私有)1.4 Java堆(线程共享)1.5 方法区(线程共享)1.5.1 方法区和永久代的关系1.5.2 常用参数1.5.3 为什…

用随机森林算法进行的一次故障预测

本案例将带大家使用一份开源的S.M.A.R.T.数据集和机器学习中的随机森林算法&#xff0c;来训练一个硬盘故障预测模型&#xff0c;并测试效果。 实验目标 掌握使用机器学习方法训练模型的基本流程&#xff1b;掌握使用pandas做数据分析的基本方法&#xff1b;掌握使用scikit-l…

AWS的收费方式与计费项目

AWS&#xff08;亚马逊云服务&#xff09;是全球领先的云计算服务提供商&#xff0c;为各种规模和类型的企业提供了广泛的云计算服务。AWS的收费方式和计费项目是许多用户关心的问题&#xff0c;因为了解这些信息有助于企业更好地规划和控制成本。本文将介绍AWS的收费方式和常见…

MobileVitv1替换yolov8主干网络

一、原理介绍 MobileViT模型是为移动设备设计的轻量级、通用目的视觉变换器。它融合了卷积神经网络&#xff08;CNN&#xff09;和视觉变换器&#xff08;ViT&#xff09;的优势&#xff0c;旨在在保持高效性能的同时减少模型参数和降低延迟。以下是关于MobileViT模型的主要原理…